1EZY

HIGH-RESOLUTION SOLUTION STRUCTURE OF FREE RGS4 BY NMR


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 30 
  • Selection Criteria: structures with acceptable covalent geometry,structures with favorable non-bond energy,structures with the least restraint violations,structures with the lowest energy,target function 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

NMR structure of free RGS4 reveals an induced conformational change upon binding Galpha.

Moy, F.J.Chanda, P.K.Cockett, M.I.Edris, W.Jones, P.G.Mason, K.Semus, S.Powers, R.

(2000) Biochemistry 39: 7063-7073

  • DOI: https://doi.org/10.1021/bi992760w
  • Primary Citation of Related Structures:  
    1EZT, 1EZY

  • PubMed Abstract: 

    Heterotrimeric guanine nucleotide-binding proteins (G-proteins) are transducers in many cellular transmembrane signaling systems where regulators of G-protein signaling (RGS) act as attenuators of the G-protein signal cascade by binding to the Galpha subunit of G-proteins (G(i)(alpha)(1)) and increasing the rate of GTP hydrolysis. The high-resolution solution structure of free RGS4 has been determined using two-dimensional and three-dimensional heteronuclear NMR spectroscopy. A total of 30 structures were calculated by means of hybrid distance geometry-simulated annealing using a total of 2871 experimental NMR restraints. The atomic rms distribution about the mean coordinate positions for residues 5-134 for the 30 structures is 0.47 +/- 0.05 A for the backbone atoms, 0. 86 +/- 0.05 A for all atoms, and 0.56 +/- 0.04 A for all atoms excluding disordered side chains. The NMR solution structure of free RGS4 suggests a significant conformational change upon binding G(i)(alpha)(1) as evident by the backbone atomic rms difference of 1. 94 A between the free and bound forms of RGS4. The underlying cause of this structural change is a perturbation in the secondary structure elements in the vicinity of the G(i)(alpha)(1) binding site. A kink in the helix between residues K116-Y119 is more pronounced in the RGS4-G(i)(alpha)(1) X-ray structure relative to the free RGS4 NMR structure, resulting in a reorganization of the packing of the N-terminal and C-terminal helices. The presence of the helical disruption in the RGS4-G(i)(alpha)(1) X-ray structure allows for the formation of a hydrogen-bonding network within the binding pocket for G(i)(alpha)(1) on RGS4, where RGS4 residues D117, S118, and R121 interact with residue T182 from G(i)(alpha)(1). The binding pocket for G(i)(alpha)(1) on RGS4 is larger and more accessible in the free RGS4 NMR structure and does not present the preformed binding site observed in the RGS4-G(i)(alpha)(1) X-ray structure. This observation implies that the successful complex formation between RGS4 and G(i)(alpha)(1) is dependent on both the formation of the bound RGS4 conformation and the proper orientation of T182 from G(i)(alpha)(1). The observed changes for the free RGS4 NMR structure suggest a mechanism for its selectivity for the Galpha-GTP-Mg(2+) complex and a means to facilitate the GTPase cycle.


  • Organizational Affiliation

    Departments of Biological Chemistry and Neurosciences, Wyeth Research, Cambridge, MA 02140, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
REGULATOR OF G-PROTEIN SIGNALING 4166Rattus norvegicusMutation(s): 0 
UniProt
Find proteins for P49799 (Rattus norvegicus)
Explore P49799 
Go to UniProtKB:  P49799
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP49799
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 30 
  • Selection Criteria: structures with acceptable covalent geometry,structures with favorable non-bond energy,structures with the least restraint violations,structures with the lowest energy,target function 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-01-15
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-02-16
    Changes: Data collection, Database references, Derived calculations
  • Version 1.4: 2024-05-22
    Changes: Data collection