1W3J

Family 1 b-glucosidase from Thermotoga maritima in complex with tetrahydrooxazine


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.258 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.207 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural, Thermodynamic, and Kinetic Analyses of Tetrahydrooxazine-Derived Inhibitors Bound to {Beta}-Glucosidases

Gloster, T.M.Macdonald, J.M.Tarling, C.A.Stick, R.V.Withers, S.W.Davies, G.J.

(2004) J Biol Chem 279: 49236

  • DOI: https://doi.org/10.1074/jbc.M407195200
  • Primary Citation of Related Structures:  
    1W3J, 1W3K, 1W3L

  • PubMed Abstract: 

    The understanding of transition state mimicry in glycoside hydrolysis is increasingly important both in the quest for novel specific therapeutic agents and for the deduction of enzyme function and mechanism. To aid comprehension, inhibitors can be characterized through kinetic, thermodynamic, and structural dissection to build an "inhibition profile." Here we dissect the binding of a tetrahydrooxazine inhibitor and its derivatives, which display Ki values around 500 nm. X-ray structures with both a beta-glucosidase, at 2 A resolution, and an endoglucanase at atomic (approximately 1 A) resolution reveal similar interactions between the tetrahydrooxazine inhibitor and both enzymes. Kinetic analyses reveal the pH dependence of kcat/Km and 1/Ki with both enzyme systems, and isothermal titration calorimetry unveils the enthalpic and entropic contributions to beta-glucosidase inhibition. The pH dependence of enzyme activity mirrored that of 1/Ki in both enzymes, unlike the cases of isofagomine and 1-deoxynojirimycin that have been characterized previously. Calorimetric dissection reveals a large favorable enthalpy that is partially offset by an unfavorable entropy upon binding. In terms of the similar profile for the pH dependence of 1/Ki and the pH dependence of kcat/Km, the significant enthalpy of binding when compared with other glycosidase inhibitors, and the tight binding at the optimal pH of the enzymes tested, tetrahydrooxazine and its derivatives are a significantly better class of glycosidase inhibitor than previously assumed.


  • Organizational Affiliation

    Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5YW, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
BETA-GLUCOSIDASE
A, B
468Thermotoga maritimaMutation(s): 0 
EC: 3.2.1.21
UniProt
Find proteins for Q08638 (Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8))
Explore Q08638 
Go to UniProtKB:  Q08638
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ08638
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
OXZ PDBBind:  1W3J Kd: 484 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.258 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.207 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 94.562α = 90
b = 94.595β = 90
c = 113.48γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-09-08
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-12-13
    Changes: Data collection, Database references, Other, Refinement description