2ZL9

2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D3 analogs: Synthesis, biological evaluation and crystal structure


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.276 
  • R-Value Work: 0.216 
  • R-Value Observed: 0.216 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D3 analogs: Synthesis, biological evaluation, and crystal structure

Shimizu, M.Miyamoto, Y.Takaku, H.Matsuo, M.Nakabayashi, M.Masuno, H.Udagawa, N.DeLuca, H.F.Ikura, T.Ito, N.

(2008) Bioorg Med Chem 16: 6949-6964

  • DOI: https://doi.org/10.1016/j.bmc.2008.05.043
  • Primary Citation of Related Structures:  
    2ZL9, 2ZLA, 2ZLC

  • PubMed Abstract: 

    Recently, we have found that 16-ene-22-thia-26,27-dimethyl-19-norvitamin D(3) analogs 1a (n=2, 3) are 20 times more active than the natural hormone 1alpha,25-dihydroxyvitamin D(3) in terms of transcriptional activity. To further investigate the effects of the A-ring modification of 1a, b on the biological activity profile, novel 22-thia-19-norvitamin D analogs 2-11 bearing a hydroxyethoxy-, hydroxyethylidene- or methyl group at C-2 in combination with 20S- and 20R-isomers were prepared and tested for their in vitro biological activities. All of the synthesized analogs showed 0.5-140% of the activity of the natural hormone in binding to the vitamin D receptor (VDR). When compared with the transcriptional activity of C-2 or C-20 isomeric pairs of the 22-thia analogs, the 20S-isomers 2-11a were more potent than the 20R-isomers 2, 3, 8-11b, and the 2beta-hydroxyethoxy, 2E-hydroxyethylidene, and 2alpha-methyl-2beta-hydroxy-22-thia isomers showed higher potency than their corresponding counterparts. In particular, 3a exhibited an extremely higher level of potency (210-fold) than the natural hormone. To elucidate the action mode of superagonist 3a at the molecular level, we determined the crystal structures of the rat VDR-ligand-binding domain complexed with 3a or 3b in the presence of peptide containing a nuclear box motif (LxxLL) at 1.9-2.0A resolution. The crystal structures demonstrated that the 1alpha-OH, 3beta-OH, and 25-OH groups of the natural hormone and 3a were anchored by the same amino acid residues in the ligand-binding pocket, and the terminal OH moiety of the substituent at C-2 formed hydrogen bonds with Arg270 and a water molecule to create a tight water molecule network. Moreover, the methyl groups at C-26a and C-27a make additional contact with hydrophobic residues such as Leu223, Ala227, Val230, and Ala299. These hydrophilic and hydrophobic interactions in 3a may underlie the induction of superagonistic activity.


  • Organizational Affiliation

    Laboratory of Medicinal Chemistry, School of Biomedical Science, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Vitamin D3 receptor271Rattus norvegicusMutation(s): 0 
Gene Names: VdrNr1i1
UniProt
Find proteins for P13053 (Rattus norvegicus)
Explore P13053 
Go to UniProtKB:  P13053
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP13053
Sequence Annotations
Expand
  • Reference Sequence

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Coactivator peptide DRIPB [auth C]13N/AMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
VDA
Query on VDA

Download Ideal Coordinates CCD File 
C [auth A](1R,2R,3R,5Z)-17-{(1S)-1-[(2-ethyl-2-hydroxybutyl)sulfanyl]ethyl}-2-(2-hydroxyethoxy)-9,10-secoestra-5,7,16-triene-1,3-diol
C28 H46 O5 S
DUIYWCMQVXJTIP-YYDWSLPPSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.276 
  • R-Value Work: 0.216 
  • R-Value Observed: 0.216 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 153.902α = 90
b = 42.32β = 95.67
c = 42.13γ = 90
Software Package:
Software NamePurpose
CNSrefinement
ADSCdata collection
HKL-2000data reduction
HKL-2000data scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-06-24
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2023-11-01
    Changes: Data collection, Database references, Derived calculations, Refinement description