Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin
Tsuge, H., Nagahama, M., Oda, M., Iwamoto, S., Utsunomiya, H., Marquez, V.E., Katunuma, N., Nishizawa, M., Sakurai, J.(2008) Proc Natl Acad Sci U S A 105: 7399-7404
- PubMed: 18490658 
- DOI: https://doi.org/10.1073/pnas.0801215105
- Primary Citation of Related Structures:  
3BUZ - PubMed Abstract: 
The ADP-ribosylating toxins (ADPRTs) produced by pathogenic bacteria modify intracellular protein and affect eukaryotic cell function. Actin-specific ADPRTs (including Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin) ADP-ribosylate G-actin at Arg-177, leading to disorganization of the cytoskeleton and cell death. Although the structures of many actin-specific ADPRTs are available, the mechanisms underlying actin recognition and selective ADP-ribosylation of Arg-177 remain unknown. Here we report the crystal structure of actin-Ia in complex with the nonhydrolyzable NAD analog betaTAD at 2.8 A resolution. The structure indicates that Ia recognizes actin via five loops around NAD: loop I (Tyr-60-Tyr-62 in the N domain), loop II (active-site loop), loop III, loop IV (PN loop), and loop V (ADP-ribosylating turn-turn loop). We used site-directed mutagenesis to confirm that loop I on the N domain and loop II are essential for the ADP-ribosyltransferase activity. Furthermore, we revealed that Glu-378 on the EXE loop is in close proximity to Arg-177 in actin, and we proposed that the ADP-ribosylation of Arg-177 proceeds by an SN1 reaction via first an oxocarbenium ion intermediate and second a cationic intermediate by alleviating the strained conformation of the first oxocarbenium ion. Our results suggest a common reaction mechanism for ADPRTs. Moreover, the structure might be of use in rational drug design to block toxin-substrate recognition.
Organizational Affiliation: 
Institute for Health Sciences and Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima 770-8514, Japan. [email protected]