3PRC

PHOTOSYNTHETIC REACTION CENTER FROM RHODOPSEUDOMONAS VIRIDIS (QB-DEPLETED)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.178 
  • R-Value Observed: 0.178 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.5 of the entry. See complete history


Literature

The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB.

Lancaster, C.R.Michel, H.

(1997) Structure 5: 1339-1359

  • DOI: https://doi.org/10.1016/s0969-2126(97)00285-2
  • Primary Citation of Related Structures:  
    2PRC, 3PRC

  • PubMed Abstract: 

    In a reaction of central importance to the energetics of photosynthetic bacteria, light-induced electron transfer in the reaction centre (RC) is coupled to the uptake of protons from the cytoplasm at the binding site of the secondary quinone (QB). In the original structure of the RC from Rhodopseudomonas viridis (PDB entry code 1PRC), the QB site was poorly defined because in the standard RC crystals it was only approximately 30% occupied with ubiquinone-9 (UQ9). We report here the structural characterization of the QB site by crystallographic refinement of UQ9-depleted RCs and of complexes of the RC either with ubiquinone-2 (UQ2) or the electron-transfer inhibitor stigmatellin in the QB site. The structure of the RC complex with UQ2, refined at 2.45 A resolution, constitutes the first crystallographically reliably defined binding site for quinones from the bioenergetically important quinone pool of biological, energy-transducing membranes. In the UQ9-depleted QB site of the RC structure, refined at 2.4 A resolution, apparently five (and possibly six) water molecules are bound instead of the ubiquinone head group, and a detergent molecule binds in the region of the isoprenoid tail. All of the protein-cofactor interactions implicated in the binding of the ubiquinone head group are also implicated in the binding of the stigmatellin head group. In the structure of the stigmatellin-RC complex, refined at 2.4 A resolution, additional hydrogen bonds stabilize the binding of stigmatellin over that of ubiquinone. The tentative position of UQ9 in the QB site in the original data set (1PRC) was re-examined using the structure of the UQ9-depleted RC as a reference. A modified QB site model, which exhibits greater similarity to the distal ubiquinone-10 (UQ10) positioning in the structure of the RC from Rhodobacter sphaeroides (PDB entry code 1PCR), is suggested as the dominant binding site for native UQ9. The structures reported here can provide models of quinone reduction cycle intermediates. The binding pattern observed for the stigmatellin complex, where the ligand donates a hydrogen bond to Ser L223 (where 'L' represents the L subunit of the RC), can be viewed as a model for the stabilization of a monoprotonated reduced intermediate (QBH or QBH-). The presence of Ser L223 in the QB site indicates that the QB site is not optimized for QB binding, but for QB reduction to the quinol.


  • Organizational Affiliation

    Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
PHOTOSYNTHETIC REACTION CENTERA [auth C]336Blastochloris viridisMutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P07173 (Blastochloris viridis)
Explore P07173 
Go to UniProtKB:  P07173
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP07173
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
PHOTOSYNTHETIC REACTION CENTERB [auth L]273Blastochloris viridisMutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P06009 (Blastochloris viridis)
Explore P06009 
Go to UniProtKB:  P06009
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP06009
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChains Sequence LengthOrganismDetailsImage
PHOTOSYNTHETIC REACTION CENTERC [auth M]323Blastochloris viridisMutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P06010 (Blastochloris viridis)
Explore P06010 
Go to UniProtKB:  P06010
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP06010
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 4
MoleculeChains Sequence LengthOrganismDetailsImage
PHOTOSYNTHETIC REACTION CENTERD [auth H]258Blastochloris viridisMutation(s): 0 
Membrane Entity: Yes 
UniProt
Find proteins for P06008 (Blastochloris viridis)
Explore P06008 
Go to UniProtKB:  P06008
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP06008
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 8 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
BCB
Query on BCB

Download Ideal Coordinates CCD File 
I [auth L],
J [auth L],
R [auth M],
S [auth M]
BACTERIOCHLOROPHYLL B
C55 H72 Mg N4 O6
QNWPCDKNPGOYNP-DSENBSCCSA-M
BPB
Query on BPB

Download Ideal Coordinates CCD File 
K [auth L],
T [auth M]
BACTERIOPHEOPHYTIN B
C55 H74 N4 O6
SFKCKJXMIAKQMY-GTTFDWDMSA-N
MQ7
Query on MQ7

Download Ideal Coordinates CCD File 
U [auth M]MENAQUINONE-7
C46 H64 O2
RAKQPZMEYJZGPI-LJWNYQGCSA-N
HEM
Query on HEM

Download Ideal Coordinates CCD File 
E [auth C],
F [auth C],
G [auth C],
H [auth C]
PROTOPORPHYRIN IX CONTAINING FE
C34 H32 Fe N4 O4
KABFMIBPWCXCRK-RGGAHWMASA-L
NS5
Query on NS5

Download Ideal Coordinates CCD File 
V [auth M]15-cis-1,2-dihydroneurosporene
C40 H60
NHKJSVKSSGKUCH-DBWJSHEJSA-N
LDA
Query on LDA

Download Ideal Coordinates CCD File 
AA [auth H]
BA [auth H]
L
M [auth L]
W [auth M]
AA [auth H],
BA [auth H],
L,
M [auth L],
W [auth M],
X [auth M],
Y [auth M]
LAURYL DIMETHYLAMINE-N-OXIDE
C14 H31 N O
SYELZBGXAIXKHU-UHFFFAOYSA-N
SO4
Query on SO4

Download Ideal Coordinates CCD File 
O [auth M],
P [auth M],
Q [auth M],
Z [auth H]
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
FE2
Query on FE2

Download Ideal Coordinates CCD File 
N [auth M]FE (II) ION
Fe
CWYNVVGOOAEACU-UHFFFAOYSA-N
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
FME
Query on FME
D [auth H]L-PEPTIDE LINKINGC6 H11 N O3 SMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.178 
  • R-Value Observed: 0.178 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 223.5α = 90
b = 223.5β = 90
c = 113.6γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
MOSFLMdata reduction
CCP4data scaling
Agrovatadata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1998-11-11
    Type: Initial release
  • Version 1.1: 2008-03-03
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 1.3: 2011-11-16
    Changes: Atomic model
  • Version 1.4: 2023-08-09
    Changes: Database references, Derived calculations, Other, Refinement description
  • Version 1.5: 2024-10-23
    Changes: Data collection, Structure summary