6T0E

The glucuronoyl esterase OtCE15A S267A variant from Opitutus terrae in complex with benzyl D-glucuronoate and D-glucuronate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.89 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.162 
  • R-Value Observed: 0.164 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 2.1 of the entry. See complete history


Literature

Structural and biochemical studies of the glucuronoyl esteraseOtCE15A illuminate its interaction with lignocellulosic components.

Mazurkewich, S.Poulsen, J.N.Lo Leggio, L.Larsbrink, J.

(2019) J Biol Chem 294: 19978-19987

  • DOI: https://doi.org/10.1074/jbc.RA119.011435
  • Primary Citation of Related Structures:  
    6SYR, 6SYU, 6SYV, 6SZ0, 6SZ4, 6SZO, 6T0E, 6T0I

  • PubMed Abstract: 

    Glucuronoyl esterases (GEs) catalyze the cleavage of ester linkages between lignin and glucuronic acid moieties on glucuronoxylan in plant biomass. As such, GEs represent promising biochemical tools in industrial processing of these recalcitrant resources. However, details on how GEs interact and catalyze degradation of their natural substrates are sparse, calling for thorough enzyme structure-function studies. Presented here is a structural and mechanistic investigation of the bacterial GE Ot CE15A. GEs belong to the carbohydrate esterase family 15 (CE15), which is in turn part of the larger α/β-hydrolase superfamily. GEs contain a Ser-His-Asp/Glu catalytic triad, but the location of the catalytic acid in GEs has been shown to be variable, and Ot CE15A possesses two putative catalytic acidic residues in the active site. Through site-directed mutagenesis, we demonstrate that these residues are functionally redundant, possibly indicating the evolutionary route toward new functionalities within the family. Structures determined with glucuronate, in both native and covalently bound intermediate states, and galacturonate provide insights into the catalytic mechanism of CE15. A structure of Ot CE15A with the glucuronoxylooligosaccharide 2 3 -(4- O -methyl-α-d-glucuronyl)-xylotriose (commonly referred to as XUX) shows that the enzyme can indeed interact with polysaccharides from the plant cell wall, and an additional structure with the disaccharide xylobiose revealed a surface binding site that could possibly indicate a recognition mechanism for long glucuronoxylan chains. Collectively, the results indicate that Ot CE15A, and likely most of the CE15 family, can utilize esters of glucuronoxylooligosaccharides and support the proposal that these enzymes work on lignin-carbohydrate complexes in plant biomass.


  • Organizational Affiliation

    Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
glucuronoyl esterase OtCE15A
A, B
421Opitutus terrae PB90-1Mutation(s): 1 
Gene Names: Oter_0116
UniProt
Find proteins for B1ZMF4 (Opitutus terrae (strain DSM 11246 / JCM 15787 / PB90-1))
Explore B1ZMF4 
Go to UniProtKB:  B1ZMF4
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupB1ZMF4
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 10 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
M55 (Subject of Investigation/LOI)
Query on M55

Download Ideal Coordinates CCD File 
E [auth A]benzyl alpha-D-glucopyranuronate
C13 H16 O7
MYEUFSLWFIOAGY-SVNGYHJRSA-N
PG4
Query on PG4

Download Ideal Coordinates CCD File 
F [auth A]TETRAETHYLENE GLYCOL
C8 H18 O5
UWHCKJMYHZGTIT-UHFFFAOYSA-N
GCU (Subject of Investigation/LOI)
Query on GCU

Download Ideal Coordinates CCD File 
C [auth A],
NA [auth B]
alpha-D-glucopyranuronic acid
C6 H10 O7
AEMOLEFTQBMNLQ-WAXACMCWSA-N
PGE
Query on PGE

Download Ideal Coordinates CCD File 
DA [auth A],
EA [auth A],
FA [auth A],
FB [auth B],
GA [auth A]
TRIETHYLENE GLYCOL
C6 H14 O4
ZIBGPFATKBEMQZ-UHFFFAOYSA-N
PEG
Query on PEG

Download Ideal Coordinates CCD File 
AA [auth A]
BA [auth A]
CA [auth A]
DB [auth B]
EB [auth B]
AA [auth A],
BA [auth A],
CA [auth A],
DB [auth B],
EB [auth B],
Z [auth A]
DI(HYDROXYETHYL)ETHER
C4 H10 O3
MTHSVFCYNBDYFN-UHFFFAOYSA-N
DMS
Query on DMS

Download Ideal Coordinates CCD File 
KB [auth B],
LA [auth A],
LB [auth B],
MA [auth A],
MB [auth B]
DIMETHYL SULFOXIDE
C2 H6 O S
IAZDPXIOMUYVGZ-UHFFFAOYSA-N
TMO
Query on TMO

Download Ideal Coordinates CCD File 
GB [auth B]
HB [auth B]
IA [auth A]
IB [auth B]
JA [auth A]
GB [auth B],
HB [auth B],
IA [auth A],
IB [auth B],
JA [auth A],
JB [auth B],
KA [auth A]
trimethylamine oxide
C3 H9 N O
UYPYRKYUKCHHIB-UHFFFAOYSA-N
EDO
Query on EDO

Download Ideal Coordinates CCD File 
AB [auth B]
BB [auth B]
CB [auth B]
G [auth A]
H [auth A]
AB [auth B],
BB [auth B],
CB [auth B],
G [auth A],
H [auth A],
I [auth A],
J [auth A],
K [auth A],
L [auth A],
M [auth A],
N [auth A],
O [auth A],
OA [auth B],
P [auth A],
PA [auth B],
Q [auth A],
QA [auth B],
R [auth A],
RA [auth B],
S [auth A],
SA [auth B],
T [auth A],
TA [auth B],
U [auth A],
UA [auth B],
V [auth A],
VA [auth B],
W [auth A],
WA [auth B],
X [auth A],
XA [auth B],
Y [auth A],
YA [auth B],
ZA [auth B]
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
CL
Query on CL

Download Ideal Coordinates CCD File 
D [auth A]CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
MG
Query on MG

Download Ideal Coordinates CCD File 
HA [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.89 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.162 
  • R-Value Observed: 0.164 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 51.719α = 90
b = 87.611β = 90
c = 173.91γ = 90
Software Package:
Software NamePurpose
XDSdata reduction
XDSdata scaling
PHENIXphasing
PHENIXrefinement

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
Knut and Alice Wallenberg FoundationSweden--
Novo Nordisk FoundationDenmarkNNF17OC0027698

Revision History  (Full details and data files)

  • Version 1.0: 2019-11-27
    Type: Initial release
  • Version 1.1: 2020-01-15
    Changes: Database references
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2024-01-24
    Changes: Data collection, Database references, Refinement description, Structure summary