1A39

HUMICOLA INSOLENS ENDOCELLULASE EGI S37W, P39W DOUBLE-MUTANT


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.260 
  • R-Value Work: 0.170 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 2.3 of the entry. See complete history


Literature

Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites.

Davies, G.J.Ducros, V.Lewis, R.J.Borchert, T.V.Schulein, M.

(1997) J Biotechnol 57: 91-100

  • DOI: https://doi.org/10.1016/s0168-1656(97)00092-8
  • Primary Citation of Related Structures:  
    1A39

  • PubMed Abstract: 

    Family 7 of the glycosyl hydrolases contains both endoglucanases and cellobiohydrolases. In addition to their different catalytic activities on crystalline substrates, the cellobiohydrolases differ from the endoglucanases in their activity on longer soluble substrates, indicative of a greater number of subsites on the enzyme. A double mutant (S37W, P39W) of the Humicola insolens endoglucanase I (EG I) has been constructed in order to mimic aspects of the subsite structure of the corresponding family 7 cellobiohydrolase, cellobiohydrolase-I (CBH I). The 3-D crystal structure of the double mutant has been solved and refined to a crystallographic R-factor of 0.17 at a resolution of 2.2 A (1 A = 0.1 nm). The two mutant tryptophans are clearly visible in the electron density and are in the same orientation as those found in the substrate binding groove of CBH I. In addition to the substitutions, the C-terminal amino acids (399QELQ), disordered in the native enzyme structure, are clearly visible and there are a small number of minor loop movements associated with differences in crystal packing. Kinetic determinations show that the S37W, P39W mutant EG I has almost identical activity, compared to native EG I, on small soluble cellodextrins. On phosphoric acid swollen cellulose there is a small (30%), but significant, decrease in the apparent KM indicating that the double mutant may indeed exhibit stronger binding to longer polymeric substrates.


  • Organizational Affiliation

    Department of Chemistry, University of York, Heslington, UK. [email protected]


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ENDOGLUCANASE I402Mycothermus thermophilusMutation(s): 0 
Gene Names: POTENTIAL
EC: 3.2.1.4
UniProt
Find proteins for P56680 (Humicola insolens)
Explore P56680 
Go to UniProtKB:  P56680
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP56680
Glycosylation
Glycosylation Sites: 1
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NAG
Query on NAG

Download Ideal Coordinates CCD File 
B [auth A]2-acetamido-2-deoxy-beta-D-glucopyranose
C8 H15 N O6
OVRNDRQMDRJTHS-FMDGEEDCSA-N
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
PCA
Query on PCA
A
L-PEPTIDE LINKINGC5 H7 N O3GLN
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.260 
  • R-Value Work: 0.170 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 50.96α = 90
b = 81.4β = 90
c = 94.77γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing
REFMACrefinement

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-03-02
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 2.0: 2019-12-25
    Changes: Database references, Derived calculations, Polymer sequence
  • Version 2.1: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary
  • Version 2.2: 2024-04-03
    Changes: Data collection, Database references, Refinement description, Structure summary
  • Version 2.3: 2024-10-30
    Changes: Structure summary