1NNO

CONFORMATIONAL CHANGES OCCURRING UPON NO BINDING IN NITRITE REDUCTASE FROM PSEUDOMONAS AERUGINOSA


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.65 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.209 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.5 of the entry. See complete history


Literature

Conformational changes occurring upon reduction and NO binding in nitrite reductase from Pseudomonas aeruginosa.

Nurizzo, D.Cutruzzola, F.Arese, M.Bourgeois, D.Brunori, M.Cambillau, C.Tegoni, M.

(1998) Biochemistry 37: 13987-13996

  • DOI: https://doi.org/10.1021/bi981348y
  • Primary Citation of Related Structures:  
    1BL9, 1NNO

  • PubMed Abstract: 

    Nitrite reductase (NiR) from Pseudomonas aeruginosa (EC 1.9.3.2) (NiR-Pa) is a soluble enzyme catalyzing the reduction of nitrite (NO2-) to nitric oxide (NO). The enzyme is a 120 kDa homodimer, in which each monomer carries one c and one d1 heme. The oxidized and reduced forms of NiR from Paracoccus denitrificans GB17 (previously called Thiosphaera pantotropha) (NiR-Pd) have been described [Fülop, V., et al. (1995) Cell 81, 369-377; Williams, P. A., et al. (1997) Nature 389, 406-412], and we recently reported on the structure of oxidized NiR-Pa at 2.15 A [Nurizzo, D., et al. (1997) Structure 5, 1157-1171]. Although the domains carrying the d1 heme are almost identical in both NiR-Pa and NiR-Pd oxidized and reduced structures, the c heme domains show a different pattern of c heme coordination, depending on the species and the redox state. The sixth d1 heme ligand in oxidized NiR-Pd was found to be Tyr25, whereas in NiR-Pa, the homologuous Tyr10 does not interact directly with Fe3+, but via a hydroxide ion. Furthermore, upon reduction, the axial ligand of the c heme of NiR-Pd changes from His17 to Met108. Finally, in the oxidized NiR-Pa structure, the N-terminal stretch of residues (1-29) of one monomer interacts with the other monomer (domain swapping), which does not occur in NiR-Pd. Here the structure of reduced NiR-Pa is described both in the unbound form and with the physiological product, NO, bound at the d1 heme active site. Although both structures are similar to that of reduced NiR-Pd, significant differences with respect to oxidized NiR-Pd were observed in two regions: (i) a loop in the c heme domain (residues 56-62) is shifted 6 A away and (ii) the hydroxide ion, which is the sixth coordination ligand of the heme, is removed upon reduction and NO binding and the Tyr10 side chain rotates away from the position adopted in the oxidized form. The conformational changes observed in NiR-Pa as the result of reduction are less extensive than those occurring in NiR-Pd. Starting with oxidized structures that differ in many respects, the two enzymes converge, yielding reduced conformations which are very similar to each other, which indicates that the conformational changes involved in catalysis are considerably diverse.


  • Organizational Affiliation

    Architecture et Fonction des Macromolécules Biologiques, UPR 9039-CNRS, IBSM, Marseille, France.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
NITRITE REDUCTASE
A, B
543Pseudomonas aeruginosaMutation(s): 0 
EC: 1.9.3.2 (PDB Primary Data), 1.7.99.1 (UniProt), 1.7.2.1 (UniProt)
UniProt
Find proteins for P24474 (Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1))
Explore P24474 
Go to UniProtKB:  P24474
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP24474
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.65 Å
  • R-Value Free: 0.243 
  • R-Value Work: 0.209 
  • R-Value Observed: 0.209 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 166.072α = 90
b = 88.11β = 90
c = 113.981γ = 90
Software Package:
Software NamePurpose
X-PLORmodel building
X-PLORrefinement
DENZOdata reduction
PROWdata reduction
SCALEPACKdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1999-04-27
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-11-29
    Changes: Derived calculations, Other
  • Version 1.4: 2024-04-03
    Changes: Data collection, Database references, Derived calculations, Refinement description
  • Version 1.5: 2024-10-16
    Changes: Structure summary