1NUW

Fructose-1,6-Bisphosphatase Complex with Magnesium, Fructose-6-Phosphate and Phosphate at pH 9.6


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.30 Å
  • R-Value Free: 0.207 
  • R-Value Work: 0.164 
  • R-Value Observed: 0.168 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history


Literature

Metaphosphate in the active site of fructose-1,6-bisphosphatase

Choe, J.Y.Iancu, C.V.Fromm, H.J.Honzatko, R.B.

(2003) J Biol Chem 278: 16015-16020

  • DOI: https://doi.org/10.1074/jbc.M212395200
  • Primary Citation of Related Structures:  
    1NUW, 1NUX, 1NUY

  • PubMed Abstract: 

    The hydrolysis of a phosphate ester can proceed through an intermediate of metaphosphate (dissociative mechanism) or through a trigonal bipryamidal transition state (associative mechanism). Model systems in solution support the dissociative pathway, whereas most enzymologists favor an associative mechanism for enzyme-catalyzed reactions. Crystals of fructose-1,6-bisphosphatase grow from an equilibrium mixture of substrates and products at near atomic resolution (1.3 A). At neutral pH, products of the reaction (orthophosphate and fructose 6-phosphate) bind to the active site in a manner consistent with an associative reaction pathway; however, in the presence of inhibitory concentrations of K+ (200 mm), or at pH 9.6, metaphosphate and water (or OH-) are in equilibrium with orthophosphate. Furthermore, one of the magnesium cations in the pH 9.6 complex resides in an alternative position, and suggests the possibility of metal cation migration as the 1-phosphoryl group of the substrate undergoes hydrolysis. To the best of our knowledge, the crystal structures reported here represent the first direct observation of metaphosphate in a condensed phase and may provide the structural basis for fundamental changes in the catalytic mechanism of fructose-1,6-bisphosphatase in response to pH and different metal cation activators.


  • Organizational Affiliation

    Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Fructose-1,6-bisphosphatase337Sus scrofaMutation(s): 0 
EC: 3.1.3.11
UniProt
Find proteins for P00636 (Sus scrofa)
Explore P00636 
Go to UniProtKB:  P00636
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00636
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.30 Å
  • R-Value Free: 0.207 
  • R-Value Work: 0.164 
  • R-Value Observed: 0.168 
  • Space Group: I 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 53.6α = 90
b = 83.017β = 90
c = 165.378γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement
SHELXL-97refinement
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-07-08
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 1.3: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Derived calculations, Structure summary
  • Version 1.4: 2023-10-25
    Changes: Data collection, Database references, Refinement description, Structure summary