1ZOL

native beta-PGM


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.211 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.202 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis

Zhang, G.Dai, J.Wang, L.Dunaway-Mariano, D.Tremblay, L.W.Allen, K.N.

(2005) Biochemistry 44: 9404-9416

  • DOI: https://doi.org/10.1021/bi050558p
  • Primary Citation of Related Structures:  
    1ZOL

  • PubMed Abstract: 

    Lactococcus lactis beta-phosphoglucomutase (beta-PGM) catalyzes the interconversion of beta-d-glucose 1-phosphate (beta-G1P) and beta-d-glucose 6-phosphate (G6P), forming beta-d-glucose 1,6-(bis)phosphate (beta-G16P) as an intermediate. Beta-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has evolved to function as a mutase rather than as a phosphatase. This work was carried out to identify the structural basis underlying this diversification of function. In this paper, we examine beta-PGM activation by the Mg(2+) cofactor, beta-PGM activation by Asp8 phosphorylation, and the role of cap domain closure in substrate discrimination. First, the 1.90 A resolution X-ray crystal structure of the Mg(2+)-beta-PGM complex is examined in the context of previously reported structures of the Mg(2+)-alpha-d-galactose-1-phosphate-beta-PGM, Mg(2+)-phospho-beta-PGM, and Mg(2+)-beta-glucose-6-phosphate-1-phosphorane-beta-PGM complexes to identify conformational changes that occur during catalytic turnover. The essential role of Asp8 in nucleophilic catalysis was confirmed by demonstrating that the D8A and D8E mutants are devoid of catalytic activity. Comparison of the ligands to Mg(2+) in the different complexes shows that a single Mg(2+) coordination site must alternatively accommodate water, phosphate, and the phosphorane intermediate during catalytic turnover. Limited involvement of the HAD family metal-binding loop in Mg(2+) anchoring in beta-PGM is consistent with the relatively loose binding indicated by the large K(m) for Mg(2+) activation (270 +/- 20 microM) and with the retention of activity found in the E169A/D170A double loop mutant. Comparison of the relative positions of cap and core domains in the different complexes indicated that interaction of cap domain Arg49 with the "nontransferring" phosphoryl group of the substrate ligand might stabilize the cap-closed conformation, as required for active site desolvation and alignment of Asp10 for acid-base catalysis. Kinetic analyses of the specificity of beta-PGM toward phosphoryl group donors and the specificity of phospho-beta-PGM toward phosphoryl group acceptors were carried out. The results support a substrate induced-fit mechanism of beta-PGM catalysis, which allows phosphomutase activity to dominate over the intrinsic phosphatase activity. Last, we present evidence that the autophosphorylation of beta-PGM by the substrate beta-G1P accounts for the origin of phospho-beta-PGM in the cell.


  • Organizational Affiliation

    Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
beta-phosphoglucomutase221Lactococcus lactisMutation(s): 0 
Gene Names: LL0429
EC: 5.4.2.6
UniProt
Find proteins for P71447 (Lactococcus lactis subsp. lactis (strain IL1403))
Explore P71447 
Go to UniProtKB:  P71447
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP71447
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
MG
Query on MG

Download Ideal Coordinates CCD File 
B [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.211 
  • R-Value Work: 0.202 
  • R-Value Observed: 0.202 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 52.76α = 90
b = 57.19β = 90
c = 75.64γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2005-08-30
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-23
    Changes: Data collection, Database references, Derived calculations, Refinement description