8KBI

Structure of apo-AcrIIA7


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.210 

Starting Model: in silico
View more details

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Single phage proteins sequester signals from TIR and cGAS-like enzymes.

Li, D.Xiao, Y.Fedorova, I.Xiong, W.Wang, Y.Liu, X.Huiting, E.Ren, J.Gao, Z.Zhao, X.Cao, X.Zhang, Y.Bondy-Denomy, J.Feng, Y.

(2024) Nature 

  • DOI: https://doi.org/10.1038/s41586-024-08122-4
  • Primary Citation of Related Structures:  
    8KBB, 8KBC, 8KBD, 8KBE, 8KBF, 8KBG, 8KBH, 8KBI, 8KBJ, 8KBK, 8KBL, 8KBM, 8WJC, 8WJD, 8WJE

  • PubMed Abstract: 

    Prokaryotic anti-phage immune systems use TIR and cGAS-like enzymes to produce 1''-3'-glycocyclic ADP-ribose (1''-3'-gcADPR) and cyclic dinucleotide (CDN) and cyclic trinucleotide (CTN) signalling molecules, respectively, which limit phage replication 1-3 . However, how phages neutralize these distinct and common systems is largely unclear. Here we show that the Thoeris anti-defence proteins Tad1 4 and Tad2 5 both achieve anti-cyclic-oligonucleotide-based anti-phage signalling system (anti-CBASS) activity by simultaneously sequestering CBASS cyclic oligonucleotides. Apart from binding to the Thoeris signals 1''-3'-gcADPR and 1''-2'-gcADPR, Tad1 also binds to numerous CBASS CDNs and CTNs with high affinity, inhibiting CBASS systems that use these molecules in vivo and in vitro. The hexameric Tad1 has six binding sites for CDNs or gcADPR, which are independent of the two high-affinity binding sites for CTNs. Tad2 forms a tetramer that also sequesters various CDNs in addition to gcADPR molecules, using distinct binding sites to simultaneously bind to these signals. Thus, Tad1 and Tad2 are both two-pronged inhibitors that, alongside anti-CBASS protein 2 (Acb2 6-8 ), establish a paradigm of phage proteins that use distinct binding sites to flexibly sequester a considerable breadth of cyclic nucleotides.


  • Organizational Affiliation

    State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Inhibitor of Type II CRISPR-Cas systemA,
B [auth D],
C [auth B],
D [auth C]
104metagenomeMutation(s): 0 
Gene Names: acrIIA7
UniProt
Find proteins for A0A447EB45 (metagenome)
Explore A0A447EB45 
Go to UniProtKB:  A0A447EB45
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupA0A447EB45
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Modified Residues  1 Unique
IDChains TypeFormula2D DiagramParent
MSE
Query on MSE
A,
B [auth D],
C [auth B],
D [auth C]
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.227 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.210 
  • Space Group: P 32 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 91.039α = 90
b = 91.039β = 90
c = 99.181γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XDSdata scaling
PHENIXphasing

Structure Validation

View Full Validation Report



Entry History & Funding Information

Deposition Data


Funding OrganizationLocationGrant Number
National Natural Science Foundation of China (NSFC)China--

Revision History  (Full details and data files)

  • Version 1.0: 2024-08-07
    Type: Initial release
  • Version 1.1: 2024-10-30
    Changes: Structure summary
  • Version 1.2: 2024-11-06
    Changes: Database references
  • Version 1.3: 2024-11-13
    Changes: Database references